skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khouri, Ricardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. MethodsBetween November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)–related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. ResultsIn 61 households, we detected a total of 94 RT-PCR–positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%–63.0%). Women (relative risk [RR], 1.6 [95% CI, .9–2.7]), older individuals (median difference, 15 [95% CI, 2–21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0–3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%–40.9%). ConclusionsThese findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19. 
    more » « less
  2. Objectives: The SARS-CoV-2 BQ.1* variant rapidly spread globally in late 2022, posing a challenge due to its increased immune evasion. Methods: We conducted a prevalence survey in Brazil from November 16 to December 22, 2022, as part of a cohort study. We conducted interviews and collected nasal samples for reverse transcription-polymerase chain reaction (RT-PCR) testing and whole-genome sequencing. Cumulative incidence was estimated using RT-PCR positivity, cycle threshold values, and external data on the dynamics of RT-PCR positivity following infection. Results: Among 535 participants, 54% had documented SARS-CoV-2 exposure before this outbreak and 74% had received COVID-19 vaccination. In this study, 14.8% tested positive for SARS-CoV-2, with BQ.1* identified in 90.7% of cases. Using case data and cycle threshold values, cumulative incidence was estimated at 56% (95% confidence interval, 36-88%). Of the 79 positive participants, 48.1% had a symptomatic illness, with a lower proportion fulfilling the World Health Organization COVID-19 case definition compared to prior Omicron waves. No participants required medical attention. Conclusions: Despite high population-level hybrid immunity, the BQ.1* variant attacked 56% of our population. Lower disease severity was associated with BQ.1* compared to prior Omicron variants. Hybrid immunity may provide protection against future SARS-CoV-2 variants but in this case was not able to prevent widespread transmission. 
    more » « less
  3. Yakob, Laith (Ed.)
    Improving our understanding of Mayaro virus (MAYV) ecology is critical to guide surveillance and risk assessment. We conducted a PRISMA-adherent systematic review of the published and grey literature to identify potential arthropod vectors and non-human animal reservoirs of MAYV. We searched PubMed/MEDLINE, Embase, Web of Science, SciELO and grey-literature sources including PAHO databases and dissertation repositories. Studies were included if they assessed MAYV virological/immunological measured occurrence in field-caught, domestic, or sentinel animals or in field-caught arthropods. We conducted an animal seroprevalence meta-analysis using a random effects model. We compiled granular georeferenced maps of non-human MAYV occurrence and graded the quality of the studies using a customized framework. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Sixteen studies detected MAYV in wild-caught mosquito genera including Haemagogus , Aedes , Culex , Psorophora , Coquillettidia , and Sabethes . Vertebrate animals or arthropods with MAYV were detected in Brazil, Panama, Peru, French Guiana, Colombia, Trinidad, Venezuela, Argentina, and Paraguay. Among non-human vertebrates, the Primate order had the highest pooled seroprevalence at 13.1% (95% CI: 4.3–25.1%). From the three most studied primate genera we found the highest seroprevalence was in Alouatta (32.2%, 95% CI: 0.0–79.2%), followed by Callithrix (17.8%, 95% CI: 8.6–28.5%), and Cebus/Sapajus (3.7%, 95% CI: 0.0–11.1%). We further found that MAYV occurs in a wide range of vectors beyond Haemagogus spp. The quality of evidence behind these findings was variable and prompts calls for standardization of reporting of arbovirus occurrence. These findings support further risk emergence prediction, guide field surveillance efforts, and prompt further in-vivo studies to better define the ecological drivers of MAYV maintenance and potential for emergence. 
    more » « less